
Figure 6.2 Karl Friedrich Gauss (1777–1855) was a legendary
mathematician of the nineteenth century. Although his major
contributions were to the field of mathematics, he also did
important work in physics and astronomy.

6.1 | Electric Flux

Learning Objectives

By the end of this section, you will be able to:

• Define the concept of flux

• Describe electric flux

• Calculate electric flux for a given situation

The concept of flux describes how much of something goes through a given area. More formally, it is the dot product of a
vector field (in this chapter, the electric field) with an area. You may conceptualize the flux of an electric field as a measure
of the number of electric field lines passing through an area (Figure 6.3). The larger the area, the more field lines go
through it and, hence, the greater the flux; similarly, the stronger the electric field is (represented by a greater density of
lines), the greater the flux. On the other hand, if the area rotated so that the plane is aligned with the field lines, none will
pass through and there will be no flux.

Figure 6.3 The flux of an electric field through the shaded
area captures information about the “number” of electric field
lines passing through the area. The numerical value of the
electric flux depends on the magnitudes of the electric field and
the area, as well as the relative orientation of the area with
respect to the direction of the electric field.
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A macroscopic analogy that might help you imagine this is to put a hula hoop in a flowing river. As you change the angle
of the hoop relative to the direction of the current, more or less of the flow will go through the hoop. Similarly, the amount
of flow through the hoop depends on the strength of the current and the size of the hoop. Again, flux is a general concept;
we can also use it to describe the amount of sunlight hitting a solar panel or the amount of energy a telescope receives from
a distant star, for example.

To quantify this idea, Figure 6.4(a) shows a planar surface S1 of area A1 that is perpendicular to the uniform electric field

E→ = E ŷ . If N field lines pass through S1 , then we know from the definition of electric field lines (Electric Charges

and Fields) that N/A1 ∝ E, or N ∝ EA1.

The quantity EA1 is the electric flux through S1 . We represent the electric flux through an open surface like S1 by the

symbol Φ . Electric flux is a scalar quantity and has an SI unit of newton-meters squared per coulomb ( N · m2 /C ). Notice

that N ∝ EA1 may also be written as N ∝ Φ , demonstrating that electric flux is a measure of the number of field lines

crossing a surface.

Figure 6.4 (a) A planar surface S1 of area A1 is perpendicular to the electric field E j
^

. N field lines cross

surface S1 . (b) A surface S2 of area A2 whose projection onto the xz-plane is S1 .The same number of field lines

cross each surface.

Now consider a planar surface that is not perpendicular to the field. How would we represent the electric flux? Figure
6.4(b) shows a surface S2 of area A2 that is inclined at an angle θ to the xz-plane and whose projection in that plane is

S1 (area A1 ). The areas are related by A2 cos θ = A1. Because the same number of field lines crosses both S1 and S2 ,

the fluxes through both surfaces must be the same. The flux through S2 is therefore Φ = EA1 = EA2 cos θ. Designating

n̂ 2 as a unit vector normal to S2 (see Figure 6.4(b)), we obtain

Φ = E→ · n̂ 2 A2.

Check out this video (https://openstaxcollege.org/l/21fluxsizeangl) to observe what happens to the flux as
the area changes in size and angle, or the electric field changes in strength.

Area Vector

For discussing the flux of a vector field, it is helpful to introduce an area vector A
→

. This allows us to write the last

equation in a more compact form. What should the magnitude of the area vector be? What should the direction of the area
vector be? What are the implications of how you answer the previous question?

The area vector of a flat surface of area A has the following magnitude and direction:

• Magnitude is equal to area (A)
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• Direction is along the normal to the surface ( n̂ ); that is, perpendicular to the surface.

Since the normal to a flat surface can point in either direction from the surface, the direction of the area vector of an open
surface needs to be chosen, as shown in Figure 6.5.

Figure 6.5 The direction of the area vector of an open surface
needs to be chosen; it could be either of the two cases displayed
here. The area vector of a part of a closed surface is defined to
point from the inside of the closed space to the outside. This rule
gives a unique direction.

Since n̂ is a unit normal to a surface, it has two possible directions at every point on that surface (Figure 6.6(a)). For an

open surface, we can use either direction, as long as we are consistent over the entire surface. Part (c) of the figure shows
several cases.

Figure 6.6 (a) Two potential normal vectors arise at every point on a surface. (b) The outward normal
is used to calculate the flux through a closed surface. (c) Only S3 has been given a consistent set of

normal vectors that allows us to define the flux through the surface.

However, if a surface is closed, then the surface encloses a volume. In that case, the direction of the normal vector at any
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point on the surface points from the inside to the outside. On a closed surface such as that of Figure 6.6(b), n̂ is chosen

to be the outward normal at every point, to be consistent with the sign convention for electric charge.

Electric Flux
Now that we have defined the area vector of a surface, we can define the electric flux of a uniform electric field through a
flat area as the scalar product of the electric field and the area vector, as defined in Products of Vectors (http://cnx.org/
content/m58280/latest/) :

(6.1)Φ = E→ · A
→

(uniform E→ , flat su face).

Figure 6.7 shows the electric field of an oppositely charged, parallel-plate system and an imaginary box between the plates.
The electric field between the plates is uniform and points from the positive plate toward the negative plate. A calculation
of the flux of this field through various faces of the box shows that the net flux through the box is zero. Why does the flux
cancel out here?

Figure 6.7 Electric flux through a cube, placed between two
charged plates. Electric flux through the bottom face (ABCD) is

negative, because E→ is in the opposite direction to the normal to

the surface. The electric flux through the top face (FGHK) is positive,
because the electric field and the normal are in the same direction.
The electric flux through the other faces is zero, since the electric
field is perpendicular to the normal vectors of those faces. The net
electric flux through the cube is the sum of fluxes through the six
faces. Here, the net flux through the cube is equal to zero. The
magnitude of the flux through rectangle BCKF is equal to the
magnitudes of the flux through both the top and bottom faces.

The reason is that the sources of the electric field are outside the box. Therefore, if any electric field line enters the volume
of the box, it must also exit somewhere on the surface because there is no charge inside for the lines to land on. Therefore,
quite generally, electric flux through a closed surface is zero if there are no sources of electric field, whether positive or
negative charges, inside the enclosed volume. In general, when field lines leave (or “flow out of”) a closed surface, Φ is

positive; when they enter (or “flow into”) the surface, Φ is negative.

Any smooth, non-flat surface can be replaced by a collection of tiny, approximately flat surfaces, as shown in Figure 6.8.
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If we divide a surface S into small patches, then we notice that, as the patches become smaller, they can be approximated by
flat surfaces. This is similar to the way we treat the surface of Earth as locally flat, even though we know that globally, it is
approximately spherical.

Figure 6.8 A surface is divided into patches to find the flux.

To keep track of the patches, we can number them from 1 through N . Now, we define the area vector for each patch as

the area of the patch pointed in the direction of the normal. Let us denote the area vector for the ith patch by δ A
→

i. (We

have used the symbol δ to remind us that the area is of an arbitrarily small patch.) With sufficiently small patches, we may

approximate the electric field over any given patch as uniform. Let us denote the average electric field at the location of the

ith patch by E→ i.

E→ i = average electric field ver the ith patch.

Therefore, we can write the electric flux Φi through the area of the ith patch as

Φi = E→ i · δ A
→

i (ith patch).

The flux through each of the individual patches can be constructed in this manner and then added to give us an estimate of
the net flux through the entire surface S, which we denote simply as Φ .

Φ = ∑
i = 1

N
Φi = ∑

i = 1

N
E→ i · δ A

→
i (N patch estimate).

This estimate of the flux gets better as we decrease the size of the patches. However, when you use smaller patches, you
need more of them to cover the same surface. In the limit of infinitesimally small patches, they may be considered to have

area dA and unit normal n̂ . Since the elements are infinitesimal, they may be assumed to be planar, and E→ i may be

taken as constant over any element. Then the flux dΦ through an area dA is given by dΦ = E→ · n̂ dA. It is positive

when the angle between E→ i and n̂ is less than 90° and negative when the angle is greater than 90° . The net flux is the

sum of the infinitesimal flux elements over the entire surface. With infinitesimally small patches, you need infinitely many

patches, and the limit of the sum becomes a surface integral. With ∫
S

representing the integral over S,
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(6.2)Φ = ∫
S

E→ · n̂ dA = ⌠
⌡S

E→ · d A
→

(open surface).

In practical terms, surface integrals are computed by taking the antiderivatives of both dimensions defining the area, with
the edges of the surface in question being the bounds of the integral.

To distinguish between the flux through an open surface like that of Figure 6.4 and the flux through a closed surface (one
that completely bounds some volume), we represent flux through a closed surface by

(6.3)Φ = ∮
S

E→ · n̂ dA = ∮
S

E→ · d A
→

(closed surface)

where the circle through the integral symbol simply means that the surface is closed, and we are integrating over the entire
thing. If you only integrate over a portion of a closed surface, that means you are treating a subset of it as an open surface.

Example 6.1

Flux of a Uniform Electric Field

A constant electric field of magnitude E0 points in the direction of the positive z-axis (Figure 6.9). What is the

electric flux through a rectangle with sides a and b in the (a) xy-plane and in the (b) xz-plane?

Figure 6.9 Calculating the flux of E0 through a rectangular

surface.

Strategy

Apply the definition of flux: Φ = E→ · A
→

(uniform E→ ) , where the definition of dot product is crucial.

Solution

a. In this case, Φ = E→ 0 · A
→

= E0 A = E0 ab.

b. Here, the direction of the area vector is either along the positive y-axis or toward the negative y-axis.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

Significance

The relative directions of the electric field and area can cause the flux through the area to be zero.
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Example 6.2

Flux of a Uniform Electric Field through a Closed Surface

A constant electric field of magnitude E0 points in the direction of the positive z-axis (Figure 6.10). What is

the net electric flux through a cube?

Figure 6.10 Calculating the flux of E0 through a closed cubic

surface.

Strategy

Apply the definition of flux: Φ = E→ · A
→

(uniform E→ ) , noting that a closed surface eliminates the ambiguity

in the direction of the area vector.

Solution

Through the top face of the cube, Φ = E→ 0 · A
→

= E0 A.

Through the bottom face of the cube, Φ = E→ 0 · A
→

= −E0 A, because the area vector here points downward.

Along the other four sides, the direction of the area vector is perpendicular to the direction of the electric field.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

The net flux is Φnet = E0 A − E0 A + 0 + 0 + 0 + 0 = 0 .

Significance

The net flux of a uniform electric field through a closed surface is zero.

Example 6.3

Electric Flux through a Plane, Integral Method

A uniform electric field E→ of magnitude 10 N/C is directed parallel to the yz-plane at 30° above the xy-plane,

as shown in Figure 6.11. What is the electric flux through the plane surface of area 6.0 m2 located in the
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6.1

xz-plane? Assume that n̂ points in the positive y-direction.

Figure 6.11 The electric field produces a net electric flux
through the surface S.

Strategy

Apply Φ = ∫
S

E→ · n̂ dA , where the direction and magnitude of the electric field are constant.

Solution

The angle between the uniform electric field E→ and the unit normal n̂ to the planar surface is 30° . Since

both the direction and magnitude are constant, E comes outside the integral. All that is left is a surface integral
over dA, which is A. Therefore, using the open-surface equation, we find that the electric flux through the surface
is

Φ = ∫
S

E→ · n̂ dA = EA cos θ

= (10 N/C)(6.0 m2)( cos 30°) = 52 N · m2 /C.

Significance

Again, the relative directions of the field and the area matter, and the general equation with the integral will
simplify to the simple dot product of area and electric field.

Check Your Understanding What angle should there be between the electric field and the surface
shown in Figure 6.11 in the previous example so that no electric flux passes through the surface?
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6.2

Example 6.4

Inhomogeneous Electric Field

What is the total flux of the electric field E→ = cy2 k̂ through the rectangular surface shown in Figure 6.12?

Figure 6.12 Since the electric field is not constant over the
surface, an integration is necessary to determine the flux.

Strategy

Apply Φ = ∫
S

E→ · n̂ dA . We assume that the unit normal n̂ to the given surface points in the positive

z-direction, so n̂ = k̂ . Since the electric field is not uniform over the surface, it is necessary to divide the surface

into infinitesimal strips along which E→ is essentially constant. As shown in Figure 6.12, these strips are

parallel to the x-axis, and each strip has an area dA = b dy.

Solution

From the open surface integral, we find that the net flux through the rectangular surface is

Φ = ∫
S

E→ · n̂ dA = ∫
0

a
(cy2 k̂ ) · k̂ (b dy)

= cb⌠
⌡0

a
y2 dy = 1

3 a3 bc.

Significance

For a non-constant electric field, the integral method is required.

Check Your Understanding If the electric field in Example 6.4 is E→ = mx k̂ , what is the flux

through the rectangular area?
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